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The purpose of this note is to describe a particular class of steady fluid flows, 
for which the techniques of classical hydrodynamics and boundary-layer theory 
determine uniquely the asymptotic flow for large Reynolds number for each of 
a continuously varied set of boundary conditions. The flows involve viscous 
layers in the interior of the flow domain, as well as boundary layers, and the 
investigation is unusual in that the position and structure of all the viscous 
layers are determined uniquely. The note is intended to  be an illustration of the 
principles that lead to this determination, not a source of information of practical 
value. 

The flows take place in a two-dimensional channel with porous walls through 
which fluid is uniformly injected or extracted. When fluid is extracted through 
both walls there are boundary layers on both walls and the flow outside these 
layers is irrotational. When fluid is extracted through one wall and injected 
through the other, there is a boundary layer only on the former wall and the 
inviscid rotational flow outside this layer satisfies the no-slip condition on the 
other wall. When fluid is injected through both walls there are no .boundary 
layers, but there is a viscous layer in the interior of the channel, across which 
the second derivative of the tangential velocity is discontinuous, and the position 
of this layer is determined by the requirement that the inviscid rotational flows 
on either side of it must satisfy the no-slip conditions on the walls. 

1. Introduction 
One of the central problems of hydrodynamics which remains substantially 

unsolved is how to determine the steady flow of a viscous incompressible fluid 
when the Reynolds number is large. The difficulty cannot fairly be said to be 
due to the largeness of the Reynolds number. Into the problem as a whole, this 
largeness introduces a substantial simplification, without which the hopelessly 
intractable equations of general viscous flow would govern the motion. The point 
is more that the largeness of the Reynolds number also introduces, as a by- 
product, a peculiar difficulty which has not been resolved. 

The simplification is that the asymptotic flow pattern for very large Reynolds 
numbers is divided into a number of regions, in the interior of which the rela- 
tively simple laws of inviscid dynamics are valid. Moreover, near the bounding 
surfaces of these regions, where the space gradients of the flow variables are large 
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and viscosity is important, the dynamics again takes a relatively simple form: 
that involved in boundary-layer theory. These is no proof of these results; but 
they are, with good reason, commonly accepted and are here taken as the 
starting-point . 

The peculiar difficulty of determining such a flow is that the position of the 
viscous layers in the flow field is apm'ori unknown. If all the layers were attached 
to the rigid boundaries of the flow, forming conventional boundary layers, the 
problem would be relatively easy. This is rarely the case, however; there are 
usually internal viscous layers, and owing to the non-linearity of the governing 
equations the position of these layers depends upon the details of the particular 
solution that is relevant to the problem in hand. An important example of such 
layers is provided by the phenomenon of flow separation (boundary-layer 
separation), and it is a sobering thought that, despite the S t y  or so years that 
the techniques of boundary-layer theory have been at our disposal, so little 
progress has been made with the problem that even such a bulk characteristic 
as the dependence of drag coefficient on (large) Reynolds number is still a matter 
of pure conjecture. 

Unfortunately, the work described in this note is far too special to be of much, 
if any, value as a contribution to the general problem described above. But it 
is an example, I think the first, of a non-linear boundary-value problem of 
viscous flow theory in which the positions of all the viscous layers, both boundary 
layers and internal layers, can be deduced unambiguously by the established 
techniques of boundary-layer theory. As such, the reader may find it interesting 
and perhaps useful for didactic purposes. 

2. Description of the flow 
The flow to be studied takes place in a two-dimensional channel bounded by 

the plane porous walls y = 4 h. Through these walls fluid is injected or extracted 
with constant and uniform velocity V, at y = - h and V, at  y = -t h. Both of these 
velocities may have either sign (counted positive in the positive y-direction), 
and the object is to find the steady laminar flow induced by all possible oom- 
binations of V, and V, consistent with the Reynolds number being large. In this 
context the Reynolds number is that formed from h, the kinematic viscosity v ,  
and the greater of the absolute magnitudes of V, and V,.* 

Flows of this type seem first to have been studied by Berman (1963) who 
noticed that the boundary conditions and equations of motion may all be satis- 
fied by assuming that the component of velocity v normal to the walls is inde- 
pendent of 2, the co-ordinate measured along the length of the channel. By 
continuity, the component of velocity u parallel to the walls is then given by 

where the prime denotes differentiation with respect to the non-dimensional 
variable 7 = y/h, and uo is an arbitrary function. For such a flow, the equation 

* In all viscous flows in long and narrow regions it is the Reynolds number besed on the 
cross flow that is the dynamically significant parameter, because this determines the 
departure from unidirectional flow in which the acceleration is zero. 
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of motion normal to the walls may be integrated immediately to give the kine- 
matic pressure p :  

V 
p = -vf-*v2 + P W ,  h 

where P(x) is an arbitrary function of integration. Substitution of this result 
in the other equation of motion then yields the required constraints on the 
velocity field. Thus we have 

so that 

where k, I ,  m, are constants. By a suitable choice of origin of x we may take I = 0 
(provided k + 0), and the equations for the velocity field are then 

The boundary conditions for these equations are 

v(-1)  = v,, v(1) = v,, 
v'( - 1) = 0, v'(1) = 0, 

uo( - 1) = 0, uo(l) = 0. 

and, if the walls are at rest, 

Whether or not it is proper to regard this last pair as no-slip conditions, or even 
their validity, depends to some extent on the nature of the porous material. 
However, for the purpose in hand, which is really an exercise in boundary-layer 
theory, the no-slip interpretation seems justified and we take the solution for 
uo to be uo = 0. (The possibility of eigensolutions has not been examined, 
largely because the principal problem, that of determining v, is independent 
of uo.) The same ambiguity does not arise in connexion with the boundary 
conditions (3). Here we are merely asserting that there is some condition on the 
tangential component of velocity at the wall and that it is independent of x. 
For brevity we again refer to it as a no-slip condition. 

The four boundary conditions (2) and (3) determine the constant k and the 
three constants of integration in the solutions of (1). The problem is thus to find 
the asymptotic form of these solutions as v -+ 0 for fixed values of V, and V,. 

3. Principles for determining the asymptotic solution 

In  steady flow, internal viscous layers must obviously coincide with stream 
surfaces of the asymptotic flow for large Reynolds numbers. "he essence of the 
matter is that there is no mechanism to hold a layer steadily in position against 

3.1. Possible positions of the viscow layers 
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the convective effect of a normal velocity component (unless, of course, the 
layer is supported by a porous boundary, in which case it is not internal). Also, 
in view of the geometrical similarity of the flow under consideration at different 
values of x, the viscous layers must coincide with the co-ordinate surfaces 
y = constant. The condition that these two kinds of surfaces should coincide 
is that v = 0, and it is in this sense that the positions of the internal layers depend 
on particular solutions of (l), that, is, on the boundary conditions. 

We thus start with the idea that, as J J  -+ 0 for fixed values of V, and V,, the 
aaymptotic solution of (1) is such that the flow is divided into a number of cells 
which are bounded by either the walls or the planes v = 0. In  the interior of 
these cells the solution satisfies the inviscid form of (1). Near the bounding planes 
the solution may, but does not necessarily, have a viscous structure. At this 
stage of the argument the flow may consist of any number of cells, and the next 
step in reducing the number of possibilities is to find the general inviscid solution 
for v in each of them. 

3.2. The general inviscid solution 
A first integral of the inviscid form of (l) ,  namely 

is 

where A is a constant. Then, depending on the signs of A and k, the following 
possibilities arise : 

(i) k < 0: 
A < 0, v = (k/A)*sin{(-A)*q+e}; (6) 

A = 0, z1 = ( - k ) & q + € ;  (7) 

A > 0, v = (-k/A)*sinh{A*q +e}. (8) 

(ii) k = 0, A 0: v = exp {A*y + e}. (9) 
(iii) k > 0, A > 0: v = (k/A)* cash {A*q + c}. (10) 

In  each case; e is the second arbitrary constant of integration. 
It should be noticed that (9) and (10) have no zeros, so that these solutions 

can be relevant only to cases in which there are no internal viscous layers. 
Similarly, (7) and (8) have only one zero, so that these solutions can refer only 
to cells which are bounded on at least one side by a porous wall. However, (6) 
has more than one zero, and it is the existence of this solution that continues 
to make possible, a t  least at  this stage of the argument, the idea of a flow divided 
into any number of cells. 

3.3. Continuity conditions across viscozcs layers 

The remaining piece of information that may be deduced from the inviscid 
equations is that v' must have the same value on both sides of an internal viscous 
layer. This follows immediately from (5). For k is an exact constant in the original 
viscous problem and therefore takes the same value in each cell of the asymptotic 
solution. Then, since v = 0 at an internal viscous layer, v' must be continuous 
through such a layer. 
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Continuity of w f  implies continuity of u, which shows that the internal viscous 
layers are not shear layers, as they usually are in more general laminar flows at 
large Reynolds numbers. Apparently they have a weaker structure in which 
there is a rapid transition in a normal derivative of u rather than u itself (which 
derivative will emerge shortly). 

Finally, at a boundary layer, we take only v to be continuous. 

3.4. Necessary positions of the viscous layers 

The first point to be settled by a consideration of viscous mechanics is whether 
every zero of v in the list of inviscid solutions need give rise to  a viscous layer. 
In  the case of the linear solution (7), the answer is clearly that it need not, since 
this solution is an exact solution of the full differential equation. 

For the remaining two functions (6) and (8), the easiest procedure is to differ- 
entiate the differential equation (1) twice, which yields 

(11) 
V 

u'uiv - 2)"2 - - v - 0. 
h v  - 

Thus we see that wv must vanish at any point where v and w" vanish simultan- 
eously. In  both of the inviscid solutions (6) and (8), w and wff  vanish simultaneously 
but wv does not vanish at the same point. Hence, there must be viscous layers 
at the zeros of (6) and (8), in which there is a rapid transition in at least the fifth 
derivative (and possibly a lower one, the ambiguity arising from the loss of 
information through differentiation of the differential equation). 

We now have the result that v can change sign in the interior of an inviscid 
cell only if the solution is (7) and that, in this case, the whole flow consists of a 
single cell. 

Near a porous boundary through which fluid flows with velocity V, the boundary- 
layer approximation to (1) is 

VV" - - v"' = 0, 
h 

and the solution for v' (the lowest derivative in which there is a rapid variation 
across the boundary layer) is 

where K is a constant and the boundary is taken (for the moment) to be at 7 = 0. 
For present purposes, the most important property of (1  3) is that a boundary 

layer is possible only if 

This is the well-known and physically obvious result that a boundary layer can 
exist on a porous boundary if there is extraction of fluid but not if there is in- 
jection of fluid. In  the latter case, the inviscid solution in the cell nearest to the 
boundary must be uniformly valid right up to the boundary and must there 
satisfy the no-slip condition v f  = 0. 

In  the extraction case, the no-slip condition on the inviscid solution may be 
relaxed, in the usual way, and the constant K must then be taken as the value 
of w' at the boundary, according to the inviscid solution. 

3.5. Structure of the boundary layers 

(12) 
V 

vf  = K (  1 - epWv), (13) 

vq < 0. (14) 
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It should be added here that, if V = 0, the boundary layer takes the known 
form for two-dimensional stagnation flow and that, again, a steady boundary 
layer is possible only if the normal velocity near the boundary is directed towards 
the boundary. 

3.6. Structure of the internal viscous layers 
According to 3 3.3, d must have the same value ( - k)* on each side of an internal 
viscous layer. Hence we attempt to determine the structure of the layer by 
assuming that the function 

(the layer is again taken to be near 7 = 0) provides a uniformly valid first approxi- 
mation to v and its first derivative. Within the layer we therefore set 

v N ( - k ) ) T  (16) 

w = (-k)frq+V, (16) 

(17) 

It then follows that, for a full balance between the inertial and viscous terms, the 
thickness of the layer must be proportional to vi and that the amplitude of ij is 
left arbitrary. This amplitude is of course fixed by the inviscid solutions on either 
side of the layer. In  fact, according to the inviscid solutions (6), (7) and (8) ,  the 
first approximation to ij for small values of 7 is proportional to q 3 ,  with a constant 
of proportionality independent of v (and possibly zero). Hence in the outer 
parts of the layer, where the viscous and inviscid solutions have to be matched, 
the amplitude of V is proportional to vQ; and, owing to the linearity of equa- 
tion (17), this estimate remains valid throughout the whole layer. Thus the 
layer is such that 3” (and hence v”) remains bounded as v --f 0. The easiest way 
to  determine the essential role of the layer is then to  differentiate (17) twice, 
to  the form 

and find from (1) that V satisfies the equation 

( - k) t  7%” - 2( - k)+ V’ - v a”’ = 0. 
h 

(18) 
Y -  ( - k)fr q ’ v  - - vv = o, 
h 

and integrate twice to obtain 

where a and p are constants of integration independent of v. 
The most important property of (19) is, once again, the qualitative constraint 

arising from the irreversibility of the mechanics. Thus a viscous layer is possible 
only if ( - k)B is negative. By (16), this implies that 

v r  c 0 (20) 

and the condition is again that the normal velocity near the layer is directed 
towards the layer. When the condition is satisfied, the role of the layer may be 
regarded as smoothing out a discontinuity in 21”’ at the boundary between two 
cells of the asymptotic solution, and the constants a and /3 must be chosen 
accordingly. 
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If it should happen that v"' has the same value on both sides of the layer (and 
this is so for one particular set of boundary conditions), then u = 0 and the 
essential viscous structure of (19) is lost. Moreover, continuity of v" across the 
layer implies continuity of the constant A in (ti), and so the inviscid solution in 
one of the contiguous cells must be the analytic continuation of the solution in 
the other. Thus, were it not for the results of $3.4, we might expect a viscous 
layer to be unnecessary. However, we have seen in $3.4 that this is possible 
only for the linear solution (7). For the remaining solutions (6) and (S), a repeti- 
tion of the preceding analysis with the assumption that 

v N (-k)bj+QA( -k))73 

is uniformly valid yields the result that vv remains bounded throughout the layer 
as v + 0 with a variation given by 

-+A2(-k) t  as (+&+, (21) 

provided condition (20) is still satisfied. There are no arbitrary constants in 
this solution, and the viscous structure disappears only if A = 0, which corre- 
sponds to  the linear solution (7). In  this last case it is a simple matter to show 
that a viscous layer is not only unnecessary but impossible. 

4. The asymptotic solution for arbitrary V, and V, 
We are now in a position to determine uniquely the asymptotic solution as 

v -+ 0 for all fixed values of V, and V,. For the most part, the arguments that 
select the number of inviscid cells and the solutions in each of them depend on 
the particular combination of signs of V, and V, under consideration. But there 
is one important result which is common to all possibilities: 

v can have at most one zero. 

This follows immediately from the principles of 9 3. For, if v has more than one 
zero, the inviscid solution in the cell bounded by two of them must be (6), this 
being the only solution with more than one zero. From $3.4 we then have that 
both zeros must coincide with viscous layers, and finally, from $ 3.6 that one of 
these layers, the one a t  which v' > 0, is impossible. Hence the asymptotic solu- 
tion consists of at most two cells, and there is at most one internal viscous layer. 

(22) 

The separate cases are considered below. 

4.1. T h e m e K  > 0, V, 2 0 

By (22), v > 0 for all 7, and the asymptotic solution consists of a single cell. 
Moreover, on the left-hand boundary (left and right refer to 7 < 0 and 7 > 0, 
respectively; see figure l), there is injection of a fluid and a boundary layer is 
impossible, by Q 3.5. The inviscid solution must therefore satisfy the boundary 
conditions 

v(-1) = v,, v'(-1) = 0, v(1) = 5. (23) 
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Now the only inviscid solutions with zero derivatives are (6) and (lo), and then, 
depending on the relative magnitudes of V, and V,, the unique solution satisfying 
(23) is easily found to be 

v, < v,, 21 = v, cos {i( 1 + 7) cos--1 (v,/S)); 
v,=v,, w = V , ;  
V, > V,, w = V,cosh{~(l +a)  c0sh-l (V,/V,)}. 

c; 

FIGURE 1. The asymptotic solution for u aa v --f 0. The number beside each curve 
refem to the corresponding equation in the text. The velocity scale is arbitrary. 

In (24) the smallest positive values of 00s-1 (V,&) must be taken. In every caae 
there is a conventiond ‘suction’ boundary layer on the right-hand boundary 
of the type (13). 

4.2. The caseV, < 0, V, > 0 

In this case there must be a zero of v at  which w’ > 0. The only possible solution 

(27) 2h 

On both walls there are suction boundary layers of the type (13). 
The solution (27) represents an irrotational flow and is, of course, unique in 

this respect. That such a flow should develop when fluid is extracted from both 
boundaries is to be expected; and this provides a more direct method of deriving 
(27). In fact, Sellars (1955) used essentially the same argument to derive the 
special case of (27) in which V, = -K. 

is therefore (7) : G-v, 
2, = V,+-(l+v). 

4.3. The m e  V, = 0, V, > 0 

This case represents the transition between those considered in $54.1 and 4.2. 
It is especially interesting, not only for the physical results themselves but also 
for the way in which the solution appears as a one-sided limit V, + 0 in the 
results of $0 4.1 and 4.2. 
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Direct consideration of the case V, = 0 leads to the conclusion that there can 
be no boundary layer on the left-hand wall. For, if there were, we should have 
v‘( - 1) c 0 (see the remark at the end of Q 3.5), and this would imply the existence 
of a second zero of v, which is known to be impossible. Thus the inviscid solution 
in the cell adjacent to the left-hand wall must be uniformly valid up to the wall 
and must there satisfy the two conditions 

v( - 1) = ?J’( - 1) = 0. 
The only such solution is v = o ,  7 9 1 .  

This solution does not satisfy the right-hand boundary condition, and i t  seems 
that there must be a boundary layer on this wall, of a kind much more severe 
than any considered in $ 3: a boundary layer which is responsible for all of the 
mass flow through the porous wall. 

The result (28) may also be obtained as the limit of (26) as V, -+ 0. However, 
it  may not be obtained as the corresponding limit of (27), which refers to negative 
values of V,. The reason appears to be the nature of the discontinuity in the left- 
hand boundary condition on the inviscid solution as V, passes through zero: a 
boundary layer is possible if V, < 0 but not if V, 2 0. Thus V, = 0 should be 
regarded, so to speak, as the case of no injection, rather than no extraction, and 
the solution is obtained as the corresponding one-sided limit. 

It should be emphasized that (28) means that v/V, -+ 0 for 7 =+ 1 as v + 0, and 
gives no indication of the actual velocity distribution in the channel. This failure 
of the asymptotic analysis to produce more than a qualitative result is due, of 
course, to  the fact that viscosity is everywhere important in this case. If V, 
and h are regarded as the fixed standards of velocity and length from which the 
large Reynolds number is defined, viscosity is important near the right-hand 
wall because the length scale is short, and important everywhere else because the 
velocity is small. 

4.4. T h e m e V ,  > 0, V, < 0 
When fluid is injected through both boundaries, neither boundary can support 
a boundary layer and all of the original boundary conditions must be satisfied 
by the asymptotic inviscid solution. Thus, on grounds of over-determinacy 
alone (the inviscid equations are of lower order) one would expect an internal 
viscous layer in this case. That this is so follows immediately from the principles 
of Q 3. The boundary conditions require that there should be a zero of v in the 
interior of the channel, and the only inviscid solution which has this property 
and also satisfies the no-slip condition at a wall is (6). The zero therefore coin- 
cides with a viscous layer, by $3.4, and there are two inviscid cells in the 
asymptotic solution. 

The position of the layer follows from the condition that 2)’ must have the 
same value on both sides. Thus we find: 

The viscous layer at 7 = qo is of the type (19). 
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When V, = -%, yo = 0 and the two halves of (29) reduce to the same form. 
There is then, apparently, a single inviscid solution satisfying all the boundary 
conditions of the problem, a result which enabled Taylor (1956) and Yuan (1956) 
to obtain the solution for this special case without considering the possibility 
of viscous layers. However, this is a very special case. There is still a viscous 
layer, now at the centre of the channel and of the weaker form (21), and it is a 
consequence of symmetry that the solution in one inviscid cell is the analytio 
continuation of the solution in the other, as mentioned in Q 3.6. 

During part of the period of preparation of this paper, the author ww a visitor 
at the Guggenheim Aeronautical Laboratory of the California Institute of 
Technology, and he is especially grateful to Professor Paco Lagerstrom and 
Dr Saul Kaplun for many stimulating discussions about the nature of laminar 
flow at large Reynolds numbers. 
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